研究成果

ALIMC: Activity Landmark-Based Indoor Mapping via Crowdsourcing

期刊名称: IEEE Transactions on Intelligent Transportation Systems
全部作者: Baoding Zhou*,Qingquan Li,Qingzhou Mao,Wei Tu,Xing Zhang,Long Chen
出版年份: 2015
卷       号: 16
期       号: 5
页       码: 2774 - 2785
查看全本:
Indoormapsareintegraltopedestriannavigationsystems,anessentialelementofintelligenttransportationsystems(ITS).Inthispaper,weproposeALIMC,i.e.,ActivityLandmark-basedIndoorMappingsystemviaCrowdsourcing.ALIMCcanautomaticallyconstructindoormapsforanonymousbuildingswithoutanypriorknowledgeusingcrowdsourcingdatacollectedbysmartphones.ALIMCabstractstheindoormapusingalink–nodemodelinwhichthepathwaysarethelinksandtheintersectionsofthepathwaysarethenodes,suchascorners,eleva-tors,andstairs.Whenpassingthroughthenodes,pedestriansdothecorrespondingactivities,whicharedetectedbysmartphones.Afteractivitydetection,ALIMCextractstheactivitylandmarksfromthecrowdsourcingdataandclusterstheactivitylandmarksintodifferentclusters,eachofwhichistreatedasanodeoftheindoormap.ALIMCthenestimatestherelativedistancesbetweenallthenodesandobtainsadistancematrix.Basedonthedistancematrix,ALIMCgeneratesarelativeindoormapusingthemultidimensionalscalingtechnique.Finally,ALIMCconvertstherelativeindoormapintoanabsoluteonebasedonseveralreferencepoints.ToevaluateALIMC,weimplementALIMCinanofficebuilding.Experimentresultsshowthatthe80thpercentileerrorofthemappingaccuracyisabout0.8–1.5m.