研究成果

A stochastic geometry method for pylon reconstruction from airborne LiDAR data

期刊名称: Remote Sensing
全部作者: Bo Guo,Xianfeng Huang,Qingquan Li,Fan Zhang,Jiasong Zhu*,Chisheng Wang
出版年份: 2016
卷       号: 8
期       号: 3
页       码: 243
查看全本:
Objectdetectionandreconstructionfromremotelysenseddataareactiveresearchtopicinphotogrammetricandremotesensingcommunities.Powerengineeringdevicemonitoringbydetectingkeyobjectsisimportantforpowersafety.Inthispaper,weintroduceanovelmethodforthereconstructionofself-supportingpylonswidelyusedinhighvoltagepower-linesystemsfromairborneLiDARdata.Ourworkconstructspylonsfromalibraryof3Dparametricmodels,whicharerepresentedusingpolyhedronsbasedonstochasticgeometry.Firstly,laserpointsofpylonsareextractedfromthedatasetusinganautomaticclassificationmethod.Anenergyfunctionmadeupoftwotermsisthendefined:thefirsttermmeasurestheadequacyoftheobjectswithrespecttothedata,andthesecondtermhastheabilitytofavororpenalizecertainconfigurationsbasedonpriorknowledge.Finally,estimationisundertakenbyminimizingtheenergyusingsimulatedannealing.WeuseaMarkovChainMonteCarlosampler,leadingtoanoptimalconfigurationofobjects.Twomaincontributionsofthispaperare:(1)buildingaframeworkforautomaticpylonreconstruction;and(2)efficientglobaloptimization.Thepylonscanbepreciselyreconstructedthroughenergyoptimization.Experimentsproducingconvincingresultsvalidatedtheproposedmethodusingadatasetofcomplexstructure.