研究成果

A Self-learning Short-term Traffic Forecasting System Through Dynamic Hybrid Approach

会议名称: Proceeding of 11th International Conference on Computers in Urban Planning and Urban Management
全部作者: Jiasong Zhu*,Anthony Gar-On
出版年份: 2009
会议地址: Hong Kong, China
页    码: 16-18
查看全本:
Areliableandaccurateshort-termtrafficforecastingsystemiscrucialforthesuccessfuldeploymentofanyintelligenttransportationsystem.Alotofforecastingmodelshavebeendevelopedinrecentyearsbutnoneofthemcouldconsistentlyoutperformtheothers.Inreal-worldapplications,trafficforecastingaccuracycanbeaffectedbyalotoffactors.Impactsoflong-termchangestotrafficpatternstoshort-termtrafficforecastingareprofoundandthiscaneasilymakeanexistingforecastingsystemoutdated.Therefore,itisveryimportantforforecastingsystemstodetectlong-termchangesintrafficpatternsandmakeupdatesaccordingly.Thispaperpresentsanewforecastingmechanism,inwhichadynamichybridapproachistakenandself-learningabilityisenhanced.Resultsofacasestudyshowtheproposedapproachisfeasibleinenhancingtheadaptabilityoftrafficforecastingsystems.