会议名称: |
Proceeding of 11th International Conference on Computers in Urban Planning and Urban Management |
全部作者: |
Jiasong Zhu*,Anthony Gar-On |
出版年份: |
2009 |
会议地址: |
Hong Kong, China |
页 码: |
16-18 |
查看全本: |
|
Areliableandaccurateshort-termtrafficforecastingsystemiscrucialforthesuccessfuldeploymentofanyintelligenttransportationsystem.Alotofforecastingmodelshavebeendevelopedinrecentyearsbutnoneofthemcouldconsistentlyoutperformtheothers.Inreal-worldapplications,trafficforecastingaccuracycanbeaffectedbyalotoffactors.Impactsoflong-termchangestotrafficpatternstoshort-termtrafficforecastingareprofoundandthiscaneasilymakeanexistingforecastingsystemoutdated.Therefore,itisveryimportantforforecastingsystemstodetectlong-termchangesintrafficpatternsandmakeupdatesaccordingly.Thispaperpresentsanewforecastingmechanism,inwhichadynamichybridapproachistakenandself-learningabilityisenhanced.Resultsofacasestudyshowtheproposedapproachisfeasibleinenhancingtheadaptabilityoftrafficforecastingsystems.